
TPLP 20 (6): 1006–1020, 2020. c© The Author(s), 2020. Published by Cambridge University Press

doi:10.1017/S1471068420000319
1006

Human Robot Collaborative Assembly Planning:
An Answer Set Programming Approach

Momina Rizwan, Volkan Patoglu, and Esra Erdem
Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey

{momina,volkan.patoglu,esra.erdem}@sabanciuniv.edu

submitted 8 August 2020; revised 10 August 2020; accepted 12 August 2020

Abstract

For planning an assembly of a product from a given set of parts, robots necessitate certain cognitive skills:
high-level planning is needed to decide the order of actuation actions, while geometric reasoning is needed
to check the feasibility of these actions. For collaborative assembly tasks with humans, robots require further
cognitive capabilities, such as commonsense reasoning, sensing, and communication skills, not only to cope
with the uncertainty caused by incomplete knowledge about the humans’ behaviors but also to ensure safer
collaborations. We propose a novel method for collaborative assembly planning under uncertainty, that
utilizes hybrid conditional planning extended with commonsense reasoning and a rich set of communication
actions for collaborative tasks. Our method is based on answer set programming. We show the applicability
of our approach in a real-world assembly domain, where a bi-manual Baxter robot collaborates with a
human teammate to assemble furniture.

KEYWORDS: Answer set programming, cognitive robotics, conditional planning, assembly planning, human-
robot interaction, hybrid reasoning, robotic planning, planning under uncertainty.

1 Introduction

As high scale industries move towards customized products, robotic assembly tasks become not
only physically, but also mentally challenging. For this reason, drastic changes have been taking
place for industrial robotics over the past few years. While working areas of humans and robots
were strictly separated in the past, nowadays collaboration among robots and human operators are
necessitated such that flexible assembly systems can benefit from both the precision of robots and
the adaptability of humans. Human-robot interactions need to be safe and socially appropriate
to lead to improved performance and team satisfaction. However, the involvement of humans in
the robot workplace poses many challenges due to uncertainty about the actions, behaviors and
intentions of humans.

Collaborative assembly planning to produce customized products necessitates robots to pos-
sess certain cognitive abilities. For instance, for assembly planning, high-level task planning is
required to decide for the order of actuation actions (e.g., picking, holding, joining, placing),
while sensing is required to resolve uncertainty due to incomplete knowledge about the world
(e.g., to check for existence of proper connections). Meanwhile, geometric reasoning is required
to ensure the feasibility of both actuation and sensing actions (e.g., checking whether there exists
a collision-free path to perform a pick action). In addition, for collaborations with humans, robots
need to be furnished with further cognitive capabilities, including commonsense reasoning (e.g.,

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1471068420000319&domain=pdf
https://doi.org/10.1017/S1471068420000319

Theory and Practice of Logic Programming 1007

knowing that humans cannot carry heavy parts), sensing to resolve uncertainty about human ac-
tions (e.g., checking whether the human is holding a part to be assembled), and communication
skills to resolve uncertainty about human intentions and to ensure safe and socially acceptable
interactions. These communication skills involve greetings, asking/offering help, confirming in-
tentions, requesting actions, warnings, and providing explanations. Endowing robots with such a
variety of cognitive capabilities make collaborative assembly planning even more challenging.

We propose a novel method for collaborative assembly planning, utilizing hybrid conditional
planning (HCP-ASP) (Yalciner et al. 2017) based on answer set programming (ASP) (Brewka
et al. 2016).

HCP-ASP enables offline planning of actuation and sensing actions starting from an initial
state to reach a goal state, in the presence of incomplete knowledge and partial observability, by
considering all possible contingencies, and by considering feasibility of actions. The computed
plans can be viewed as trees of actuation actions, whose effects are deterministic, and sensing
actions, whose effects are non-deterministic. Each branch of the tree from the root to a leaf
represents a possible execution of actuation and sensing actions to reach a goal state from the
given initial state.

The novelties of our approach to collaborative assembly planning can be summarized as fol-
lows, along with our contributions:

Hybrid actuation and sensing actions. To solve collaborative assembly planning problems using
HCP-ASP, we model relevant actuation and sensing actions in ASP, and, in particular, illustrate
how continuous geometric feasibility checks (e.g., collision-free reachability checks) can be em-
bedded directly into logical descriptions of these actions by means of hard constraints.

Communication actions. Since collaborative assembly planning necessitates more interactive
collaborations between a robot and a human, we extend HCP-ASP to include communication
actions. These actions are different from actuation and sensing actions from several perspectives,
and thus we present a novel method for modeling them.

• Effects. These actions are different from actuation and sensing actions from the perspec-
tive of their effects: some of the communication actions have deterministic effects, while
some have nondeterministic effects. For instance, requesting a cooperative human team-
mate to perform some action, initiating/ending conversations, and providing explanations
have deterministic effects. On the other hand, confirming some actions, asking for help,
and offering some help necessitate some answers/feedback from human, and thus have
nondeterministic effects. Due to these differences, we identify five types of communi-
cation actions relevant for collaborative assembly planning, and introduce a method for
modeling the effects of each type of communication action.

• Preconditions. These actions are also different from actuation and sensing actions from
the perspective of their preconditions: while the preconditions of actuation and sensing ac-
tions are concerned about their executability, the preconditions of communication actions
involve commonsense knowledge for a more natural human-robot interaction (e.g., not
asking for help if the human is busy), as well as safety concerns (e.g., not asking for help
in attaching a part, if that part is dangerous for a human to touch). We identify relevant
commonsense knowledge and safety concerns, and model the preconditions of communi-
cations accordingly to compute human-aware plans.

• Feasibility checks. In actuation and sensing actions, feasibility checks are added as hard
constraints, as the robot is not capable of performing such actions physically otherwise.

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

1008 Rizwan, Patoglu, Erdem

However, in collaborative assembly problem, the robot can resolve its inability to perform
an action by asking for help from the human teammate when the robot fails to perform
a task. For that reason, feasibility checks are embedded in communication actions differ-
ently, by utilizing weak constraints.

Empirical evaluation. To investigate the usefulness and scalability of our approach, we perform
experiments over a furniture assembly domain that involves collaborations between a robot and
a human. Considering different types of human-robot interaction, we vary the number of unsafe
parts, parts that are reachable by the human teammate only, and parts that are reachable by the
robot only.

A real-world application. We illustrate applications of our method over a collaborative furniture
assembly planning domain, where a bi-manual Baxter robot collaborates with a human teammate
to assemble a coffee table.

2 Answer Set Programming

We use Answer Set Programming (ASP) (Brewka et al. 2016)—a logic programming paradigm
based on answer sets—for hybrid conditional planning as described by Yalciner et al. (2017). Let
us go over some special constructs of ASP used in our study, before we describe its use.

We consider rules of the form

Head← A1, . . . ,Am,not Bm+1, . . . ,not Bn

where n ≥ m ≥ 0, Head is a literal (a propositional atom p or its negation ¬p) or ⊥, and each
Ai is an atom or an external atom (Eiter et al. 2005). A rule is called a fact if m = n = 0, and a
constraint if Head is ⊥. A set of rules is called a program.

An external atom is an expression of the form &g[y1, . . . ,yk](x1, . . . ,xl) where y1, . . . ,yk and
x1, . . . ,xl are two lists of terms (called input and output lists, respectively), and &g is an external
predicate name. Intuitively, an external atom provides a way for deciding the truth value of an
output tuple depending on the extension of a set of input predicates. External atoms allow us
to embed results of external computations into ASP programs. For instance, the following rules
express that, at any step t of the plan, a robot cannot place an object o at location (x1,y1) if there
is no collision-free trajectory between them:

← place(a,x1,y1, t),holding(a,o, t),not &collision free[a,x1,y1]()

The external atom &collision free[a,x1,y1]() takes a, x1, y1 as inputs to an external function
implemented in Python. This external function calls a motion planner (e.g., the RRT* motion
planner (Karaman and Frazzoli 2011) from OMPL (Şucan et al. 2012) library) to check the
existence of a collision free trajectory for the arm a to reach (x1,y1). Then, it returns the result
of the computation (i.e., True or False) as a precondition.

ASP provides special constructs to represent a variety of knowledge. For instance, it is pos-
sible to express nondeterministic choice in ASP using “choice expressions” with “cardinality
constraints.” Choice expressions help us to model occurrences and non-occurrences of actions.
For instance, the following ASP rule expresses that the action of sensing the location of an object
can occur any time:

{sense(at(o), t)}.
Choice expressions with cardinality constraints help us to model nondeterministic effects of

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

Theory and Practice of Logic Programming 1009

sensing actions. For instance, the following ASP rule describes that if sensing is applied to check
the location of an object o (i.e., sense(at(o), t)), then we know that the object o is at one of the
possible locations l:

1{at(o, l, t +1) : loc(l)}1← sense(at(o), t).

Here, the location l is nondeterministically chosen by the ASP solver.
Also, it is possible to express “unknowns” using “cardinality expressions”. For instance, the

following rule expresses that if the location of object o is not known (i.e., {at(o, l, t) : loc(l)}0),
then it definitely can not be at a robot’s hand m:

¬at(o,m, t)←{at(o, l, t) : loc(l)}0

In addition to choice rules and cardinality expressions, we also utilize “weak constraints” to
express preferences over occurrences of types of actions in a plan. For instance, the following
weak constraint minimizes the number of sensing actions:

:∼ senseAct(t) [2@2, t].

3 Hybrid Conditional Planning

Conditional planning enables planning from an initial state to a goal state in the presence of
incomplete knowledge and partial observability (Warren 1976; Peot and Smith 1992; Pryor and
Collins 1996) by considering all possible contingencies. Thus the plans (called conditional plans)
are trees of actuation actions, whose effects are deterministic, and sensing actions, whose effects
are non-deterministic, where each branch of the tree from the root to a leaf represents a possible
execution of actuation and sensing actions to reach a goal state from the given initial state.

A hybrid conditional planner allows us to ensure that there are no physical constraints while
executing the computed hybrid conditional plan, by introducing external computation during
planning phase to determine feasibility of each action. As a result, infeasible actions are removed
from the plan to prevent failure of a branch.

A hybrid conditional plan can be identified as a labeled directed tree (V,E) as in Figure 1

(a) (b)
Fig. 1. (a) Some part of a hybrid conditional plan computed for (b) a human-robot collaborative assembly

planning scenario.

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

1010 Rizwan, Patoglu, Erdem

where every branch represents a possible executable plan. The set V =Va∪Vs of vertices denote
actions in the conditional plan consisting of two types of vertices. The vertices in Va represent
hybrid actuation actions (e.g., the robot’s manipulation actions to hold an object integrated with
reachability checks) are highlighted as gray in Figure 1. Whereas the vertices in Vs represent
sensing actions (e.g., sensing the shape or color of an object) highlighted as yellow in Figure 1.
The branching occurs when there is a sensing action with non-deterministic outcome, so every
vertex in Vs has at least two outgoing edges, while each vertex in Va has a single outgoing edge
based on the assumption that the actuation actions are deterministic. Each sensing action may
lead to different outcomes/observations.

The set of edges E represents the order of actions in the directed graph. Let us denote by Es

the set of outgoing edges from vertices in Vs. Then a labeling function maps every edge (x,y) in
Es by a possible outcome of the sensing action characterized by x.

In this study, we use the hybrid conditional planner HCP-ASP (Yalciner et al. 2017), based on
a parallel algorithm that calls the ASP solver CLINGO to compute the branches. The actuation
actions and sensing actions are represented in ASP, and the feasibility checks are embedded into
these action descriptions by external atoms, as suggested by Yalciner et al. (2017).

4 Representing Assembly Planning in ASP: No Communications

In an assembly domain, world states are described by fluents (i.e., atoms whose value change
by time). Some of these fluents are fully observable (i.e., the robot knows their values) and their
values are determined by actuation actions. Some of the fluents are partially observable (i.e., the
robot may not know their values) and their values are determined by sensing actions.

For instance, in the table assembly domain, the fully observable fluent attached(p, p′,c, t) rep-
resents that part p is attached to part p′ at connection point c at time step t. The fully observable
fluent holding(m, p, t) represents that manipulator m of the robot is holding part p at time step t.
The values of fully observable fluents are determined by the actuation actions:

• hold(m, p, t) (hold the part p with the manipulator m at time step t),
• attach(m, p′,c, t) (attach the part being held by the manipulator m to the part p′ through

connection point c at time step t), and
• unhold(m, t) (un-hold the part being held by the manipulator m at time step t).

The partially observable fluent humanHolding(t) describes that the human is holding some-
thing at time t, the partially observable fluent humanHoldingPart(p, t) describes that the human
is holding a part p at time t, and the partially observable fluent humanAttaching(p, p′,c, t) de-
scribes that the human is attaching part p to p′ at attach point c at time step t. The values of these
fluents are determined by the following sensing actions:

• sense(humanHolding, t) (sense if the human is holding anything or not at time step t),
• sense(humanHoldingWhichPart, t) (sense which part human is holding at time step t),
• sense(humanUnholding(p), t) (sense if human is unholding part p at time step t), and
• sense(humanAttachingWhere(p, p′), t) (sense where the human is attaching the parts p

and p′ at time step t).

The actuation actions and sensing actions are represented in ASP for hybrid conditional plan-
ning, as described by Yalciner et al. (2017). For instance, consider the robot’s action of holding

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

Theory and Practice of Logic Programming 1011

the assembly part p at time step t−1. As a deterministic effect of this action, the part p will be
in robot’s hand at the next time step t:

holding(m, p, t)← hold(m, p, t−1).

Similarly, as a direct effect, attach action will join part p in the robot’s hand to a part p′ at the
attach point c,

attached(p, p′,c, t)← attach(m, p′,c, t−1),holding(m, p, t−1).

The preconditions of actuation actions are represented by constraints. For instance, a manipulator
cannot hold a part p, if the manipulator is not free:

← hold(m, p, t),not free(m, t).

A manipulator m cannot attach a part p′ to a part p, if it is not already holding p′. In this case,
we represent this precondition by projecting attach(m, p,c, t) to attachPRT(m, p, t):

← attachPRT(m, p, t), {holding(m, p′, t) : parts(p′), p 6= p′}0.

Sensing actions are represented by atoms of the form sense(f , t), where f is a partially ob-
served fluent. The nondeterministic effects of sensing actions are described using atoms of the
form sensed(f ′′, t), where f ′′ denotes the relevant partially observed fluent, within choice rules.
A nondeterministic effect of robot observing whether the human is holding something can be
formulated by the following choice rule:

{sensed(humanHolding, t)}← sense(humanHolding, t−1).

Suppose that the human can only hold one part at a time. A nondeterministic effect of robot
observing which part the human is holding, can be formulated by the following choice rule:

1{sensed(humanHoldingPart(p), t) : parts(p)}1← sense(humanHoldingWhichPart, t−1).

The preconditions of sensing actions are also described by constraints. For instance, the robot
can observe which part the human is holding, if the robot has already sensed that the human is
holding something:

← sense(humanHoldingWhichPart, t),not humanHolding(t)

where humanHolding(t) is defined as follows:

humanHolding(t)← sensed(humanHolding, t).

The feasibility checks are embedded in the descriptions of actuation actions and sensing ac-
tions, using external atoms. For instance, in the table assembly domain, the robot can hold a part
if there exists a kinematic solution to reach the part with its manipulator. Such a reachability
check can be embedded in the precondition of hold actions as follows:

← hold(m, p, t), loc(p,r, t),not &reachable[m,r]().

In these constraints, the reachability check is performed by the external atom &reachable[m,r](),
which calls a bi-directional RRT* motion planner (Karaman and Frazzoli 2011) from OMPL (Şucan
et al. 2012) library via a Python program to check for the collision-free forward kinematics so-
lution to reach region r with the manipulator m. Such an external atom returns true if there exists
a collision-free trajectory to reach region r, and false otherwise.

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

1012 Rizwan, Patoglu, Erdem

With such a description of the table assembly domain, the robot can find a plan using the hybrid
conditional planner HCP-ASP. The collaboration between the robot and the human teammate
solely relies on the robot’s sensing actions. We extend this method to include communication
actions.

5 Communication Actions for Collaborative Assembly Planning

Communication actions are required to resolve the uncertainty caused due to the incomplete
knowledge about the human intentions and desires. More importantly, communication is needed
in a collaborative planning system to provide fluent and socially appropriate collaboration. For
this reason, in addition to actuation actions and sensing actions, we consider the following types
of communication actions for collaborative table assembly domain:

(i) confirmAttach(p, p′), t) (confirming if human wants to attach p to p′ at time step t)
(ii) askHelp(p, p′, t) (asking human help in attaching part p to p′ at time step t)

(iii) offerHelp(p, p′, t) (offering help in attaching part p to p′ at time step t)
(iv) requestToUnhold(p, t) (requesting human to un-hold part p at time step t)
(v) requestToAttach(p, p′, t) (requesting human to attach part p to part p′ at time step t)

To describe the effects of these communication actions, we extend our list of partially observed
fluents.

Effects of communication actions. Communication actions are different from actuation and sens-
ing actions, in that some of them are deterministic and some are nondeterministic. So we repre-
sent the direct effects of each communication action, depending on its type.

Requesting a collaborative human teammate to perform some action, initiating/ending con-
versations, and providing explanations have deterministic effects. Therefore, they are formalized
as deterministic actions, like actuation actions. For instance, the effect of requesting a human
teammate to attach a part p to another part p′ at time t is represented as follows:

requestedAttach(p, p′, t)← requestToAttach(p, p′, t−1). (p 6= p′)

On the other hand, communication actions (e.g., asking for confirmation) that require some
answers/feedback from humans are modeled as nondeterministic actions, like sensing actions.
The nondeterministic communication actions serve as decision nodes in a hybrid conditional
plan, similar to sensing actions. For instance, when the robot is unable to reach a part p, the
robot asks the human teammate for some help in attaching a part p′ to part p. In return, the
human responds affirmatively or negatively. The effect of asking for help in attaching part p′ to
part p is represented as follows:

1{acceptToAttach(p, p′, t); ¬acceptToAttach(p, p′, t)}1←
askHelp(p, p′, t−1). (p 6= p′)

Similarly, after the robot tries to confirm with the human as to whether she is planning to attach
a part p′ to another part p, the human teammate may respond affirmatively or negatively:

1{wantToAttach(p, p′, t +1); ¬wantToAttach(p, p′, t +1)}1←
confirmAttach(p, p′, t). (p 6= p′)

Preconditions of communication actions: commonsense knowledge. All communication actions
have relevant preconditions to ensure that they are executed when the appropriate conditions

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

Theory and Practice of Logic Programming 1013

hold. For communication actions, most of the preconditions are due to commonsense knowledge.
For instance, the robot can ask the human teammate for help in assembling a part p to another p′

if the human is not already holding something:

← askHelp(p, p′, t),humanHolding(t) (p 6= p′).

If the human teammate is holding a part p, the robot does not need to confirm that the human
will be attaching p to the part p′ that the robot is holding, if these two parts cannot be attached.

← confirmAttach(p, p′, t),class(cl, p),class(cl′, p′),not attachable(cl,cl′).

Embedding feasibility checks. In actuation and sensing actions, feasibility checks are added as
hard constraints as the robot is not physically capable of performing such actions otherwise.
However, in collaborative assembly problem, the robot can resolve its inability to perform an
action by asking for help from the human teammate when the robot fails to perform a task. To
enable communication for such cases, we do not add a reachability check as a hard constraint,
but include it as a weak constraint. We want to penalize such failures as much as possible. If such
failures cannot be avoided, then they act as a precondition for the communication actions.

For instance, for reachability checks, we define failures as follows:

reachabilityFail(m, p)← hold(m, p, t), loc(p,r, t),not &reachable[m,r]().

and include the following weak constraint in the domain description:

:∼ reachabilityFail(m, p).[2@1]

This weak constraint penalizes a solution whenever a reachability check fails but still provides
the best possible plan with a minimum number of reachability failures. Then, the robot can only
ask for help in attaching a part, if the task is infeasible for the robot (i.e., the robot cannot reach
the part using any of its manipulators) and safe for the human teammate.

← askHelp(p, p′, t), loc(p,r, t),
not 2{reachabilityFail(m, p, t) : manipulator(m)}2; not unsafeRegion(r).

Safety. Safety is an important concern for human-robot interactions. For instance, the robot
should not ask the human teammate to attach a part p (e.g., a wooden table leg with nails),
which is dangerous for a human, to some other part p′. This can be expressed by the following
constraint:

← askHelp(p, p′, t), type(Dangerous, p).

6 Experimental Evaluations

Setup. In our experiments, we have used the HCP planner HCP-ASP (Yalciner et al. 2017) for
generating conditional plans, and RRT* motion planner (Karaman and Frazzoli 2011) from
OMPL (Şucan et al. 2012) for the reachability checks embedded into action descriptions. All
experiments are performed on a Linux server with 12 2.4GHz Intel E5-2665 CPU cores and
64GB memory.

Problem Instances. We evaluate the results by computing hybrid conditional plans for 15 table
assembly instances. We consider an initial table assembly setting with two unassembled table
legs (one leg only accessible to the robot and the other only accessible to the human teammate),

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

1014 Rizwan, Patoglu, Erdem

Table 1. Experimental results demonstrating the effect of increasing the number #U of unsafe
parts on the size of the tree and the computation time (the time spent for planning and feasibility
checks). For every tree, the number of nodes corresponding to each communication actions (i.e.,
Ask for help (K), Offer help (O), Confirm (C), and Request (R)) is reported as well.

Inst. #U L D = A+S+C Communication actions DN BF N Time (sec)
K O C R Plan Checks

1 2 17 8+6+11 1 3 6 1 104 4 346 588 31
2 3 19 9+6+15 1 4 7 3 125 5 521 989 44
3 4 20 11+8+16 1 5 6 4 344 6 634 1339 46
4 5 24 12+7+17 1 6 6 4 432 7 777 3281 57
5 6 29 14+7+21 1 7 7 6 511 8 1123 5873 59

Table 2. Experimental results demonstrating the effect of increasing the number #P of parts that
are reachable by the human teammate only, on the size of the tree and the computation time (the
time spent for planning and feasibility checks). For every tree, the number of nodes corresponding
to each communication actions (i.e., Ask for help (K), Offer help (O), Confirm (C), and Request
(R)) is reported as well.

Inst. #P L D = A+S+C Communication actions DN BF N Time (sec)
K O C R Plan Checks

6 2 21 8+7+13 2 2 7 2 133 4 367 657 41
7 3 23 9+6+15 3 1 7 4 128 5 590 1013 39
8 4 20 9+8+21 4 2 9 6 314 6 653 2095 53
9 5 24 8+9+20 5 2 8 5 467 7 989 4034 76

10 6 29 9+11+22 6 2 9 6 659 8 1534 6389 61

one unassembled foot (which is a dangerous object for the human, as it has a sharp screw nail
and is accessible both to the human teammate and the robot) and a table top. In Table 1, we
increase the number of dangerous objects on the table and examine how it will effect the tree size
and the computation time. In Table 2, we increase the number of objects reachable to the human
teammate, while in Table 3 the number of objects reachable by the robot is increased.

In Tables 1–3, the size of the tree is represented by the following parameters: the total num-
ber L of leaves, the maximum length D of a branch from the root to a leaf, and the number A
of actuation, S of sensing and C of communication actions in that branch, the total number DN
of decision nodes that denote sensing actions and nondeterministic communication actions, the
maximum branching factor BF (i.e., the maximum number of sensory outcomes), the total num-
ber N of nodes in the tree (i.e., the size of the tree). We report the total computation time for the
hybrid plan, as well as the time spent on the feasibility checks.

Discussion of Results. Several observations can be made from Tables 1–3.

The computation time of a hybrid conditional plan increases as its size increases. For instance
in Table 1, a hybrid conditional plan for Instance 1 (that consists of 104 decision nodes and 17

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

Theory and Practice of Logic Programming 1015

Table 3. Experimental results demonstrating the effect of increasing the number #R of parts that
are reachable by the robot only, on the size of the tree and the computation time (the time spent
for planning and feasibility checks). For every tree, the number of nodes corresponding to each
communication actions (i.e., Ask for help (K), Offer help (O), Confirm (C), and Request (R)) is
reported as well.

Inst. #R L D = A+S+C Communication actions DN BF N Time (sec)
K O C R Plan Checks

11 2 17 6+7+5 1 1 1 2 78 4 249 422 38
12 3 16 7+6+7 1 1 2 3 94 5 312 444 39
13 4 17 9+8+5 1 1 1 2 203 6 389 613 35
14 5 21 11+7+9 1 1 3 4 353 7 411 965 42
15 6 18 13+7+5 1 1 1 2 399 8 509 1090 46

different hybrid sequential plans with a makespan up to 25) is computed in about 10 minutes,
while a hybrid conditional plan for Instance 5 (that consists of 511 decision nodes and 29 dif-
ferent hybrid sequential plans with a makespan up to 42) is computed in about 100 minutes.
The increase in computation time is not surprising since, even for polynomially bounded plans
with limited number of nondeterministic actions, the complexity of conditional planning is ΣP

2 -
complete (Baral et al. 1999). On the other hand, note that the plan is computed offline considering
all possible contingencies, and thus no time is spent for planning during execution.

The average computation time of a branch of the tree, which represents a possible hybrid se-
quential plan to reach the goal, is the total CPU time divided over L. For Instance 1 in Table 1,
this time is around 3 minutes. This suggests that, if a hybrid sequential plan of actuation ac-
tions were computed instead of a hybrid conditional plan, then replanning would take around
3 minutes for Instance 1. Such (re)planning times are not acceptable while communicating with
a human. Therefore, computing an offline hybrid conditional plan that involves communications,
in advance and by considering all possible contingencies, is advantageous for collaborative tasks.

During hybrid conditional planning, the computational time spent for the feasibility checks
is small compared to the planning time. In Table 1, hybrid conditional plan for Instance 1 is
computed in about 10 minutes, while about 30 seconds is spent for feasibility checks. Similarly,
hybrid conditional plan for Instance 5 is computed in about 100 minutes, while only 1 minute of
this computation time is attributed to the feasibility checks.

In Table 1, as the number of unsafe objects (#U) increases from 2 in Instance 1 to 6 in In-
stance 5, the number of nodes in the conditional plan and the computation time increase, from
246 to 1123 and from 588 sec to 5873 sec, respectively. Furthermore, the number of commu-
nication actions (O) to offer help to human increases significantly, compared to the instances in
Tables 2 and 3. This is expected, as the robot is required to offer help to improve safety of the
operator.

In Table 2, as the number of objects reachable by the human teammate (#P) increases from 2 in
Instance 6 to 6 in Instance 10, the number of nodes in the conditional plan and the computation
time increase, from 367 to 1534 and from 657 sec to 6389 sec, respectively. Furthermore, the
number of communication actions (R) to request human help increases significantly, compared

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

1016 Rizwan, Patoglu, Erdem

to the instances in Tables 1 and 3. Such an increase is expected, as the robot is required to request
help for objects that are unreachable or close to the human.

In Table 3, as the objects which are reachable by the robot (#R) increases from 2 in Instance 11
to 6 in Instance 15, the number of nodes in the conditional plan and the computation time in-
crease, from 249 to 399 and from 422 sec to 1090 sec, respectively. Note that the increase in
tree size and the computational time are significantly lower compared to Instances 1–10 in Ta-
bles 1 and 2, as the number of all communication actions has been significantly reduced. The
decrease in communication actions is expected since, in these instances, the robotic tasks can be
performed without the need for communication with the human teammate.

7 Collaborative Assembly Planning: A Real World Application

Collaborative table assembly domain has also been tested through real-world applications with
human volunteers. During the physical executions, a volunteer and a bi-manual (Baxter) robot
stand on the two opposite sides of a bench facing each other, as shown in the Figure 2. The bench

Fig. 2. Collaborative table assembly with a volunteer

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

Theory and Practice of Logic Programming 1017

is divided into three regions: a shared region to which both the human teammate and the robot
have access, a robot-only region and a human-only region.

In the collaborative table assembly task considered, a fully assembled table consists of a top,
four equal length legs and four matching feet. Initially, human-robot team is presented with a
set of legs of varying lengths (e.g., short, tall) and a set of feet of different shapes (i.e., square,
triangle, circle) on different regions of the bench. A foot can be attached to a leg, if the shape of
the foot matches with the hole in the leg. The robot has partial knowledge about the shapes of
the feet and the connection types of the legs.

Since the task is collaborative, the robot is required to accommodate the uncertainties not only
due the presence of a dynamic environment, but also due to the presence of human. The robot
has to decide for a final configuration that precisely describes the desired product (i.e., which
legs are assembled to the table top such that the table is stable, and which feet are connected to
those legs), and to generate a plan of actions to reach the final configuration considering all the
contingencies and human actions.

A fixed camera with a field of view of the whole scene was used to detect and track any
changes and to monitor the execution of actions. All objects in the scene were labeled with
QRcode markers to simplify object detection and tracking tasks. 3D object configurations were
tracked online using an automated pattern-based object tracker.

During execution, the collaborative human teammate was instructed to stay within the field of
view of the camera and to avoid occlusions to ensure that QRcode markers were visible by the
camera at all times. Similar to all other moveable objects in the scene, QRcode markers were
used to identify and track any parts held by the human teammate and to monitor the actions of
the human.

The natural language communication was automated using Google Translate’s text-to-speech
API. In particular, for natural language communication, Python gTTS (Google Text-to-Speech)
Library, which serves as a command-line interface tool to Google Translate’s text-to-speech API,
was utilized. Furthermore, Google Speech API was used to recognize the responses of the human
teammate.

An offline hybrid plan consists of not only a sequence of actions, but also collision-free paths
that enable feasible execution of these actions. For real-time execution, these paths were provided
to reference trajectory generation module of the Baxter robot in the order they are planned, such
that the Baxter robot can follow trajectories along these collision-free paths under closed-loop
motion control.

The planning, perception, control, and execution monitoring modules were integrated using
the Robot Operating System (ROS). Figure 2 presents snapshots from physical execution with a
volunteer.

In Snapshot 1, the robot explains that since the stamp is too close to the human and it is safer
if she can stamp the table; in Snapshot 2 the robot executes an assembly task; in Snapshot 3
the robot senses that the human is holding a leg and confirms whether she wants to assemble
it; in Snapshot 4 after the human completes her assembly, the robot assembles another leg; in
Snapshot 5 robot asks human help to assemble a leg, as it is not feasible for the robot to reach the
leg; in Snapshot 6 the robot picks a foot with the sharp nail (that is dangerous task for human)
to assembles it to the leg. An annotated video of dynamic simulation of a sample collaborative
assembly instance with Baxter robot is available at https://youtu.be/Bf6X8GLSamo.

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

1018 Rizwan, Patoglu, Erdem

8 Related Work

Collaborative Assembly Planning In typical assembly planning, no human-robot interaction is
considered and uncertainties may exist only due to the incomplete knowledge of the world. How-
ever, human-robot collaboration is concerned with the uncertainty not only due to the incomplete
knowledge about the state of the world but also due to the incomplete information about humans’
actions, behavior, intentions, belief and desires.

To reveal knowledge about the humans’ mental state, communication is necessary. Human-
robot communications have been used to guide collaborative planning, before the planning takes
place, or after planning, that is, during the execution of the plan. For instance, in the study of Kim
et al. (2017), communication between human and robot takes place before planning at a strategic
level. While planning, they consider user’s preferences to guide the planner. Experiments have
been conducted by Unhelkar et al. (2014) where human-robot communication takes place during
the execution of fetch and deliver tasks. This study compares the performance of human while
robot assistants help the worker, who is assembling a part, by fetching and delivering compo-
nents. The work by Lasota and Shah (2015) focuses on the motion level robot adaptation for safe
close proximity human-robot collaborative assembly tasks.

Our approach is different from the above mentioned approaches, as we consider communi-
cation actions while planning for collaborative task. It is desirable to ensure task fluency, as
we do not need to re-plan according to human behaviors and intentions since we plan for each
possible communication contingency beforehand. It is also preferable because for each planned
communication, we can provide evidence based explanations.

Dialog Planning Human-robot interactions in natural language have been investigated by dialog-
based approaches (Petrick and Foster 2013; Giuliani et al. 2013; Tellex et al. 2014). Some of these
approaches use conditional planning (Petrick and Foster 2013), some use branching plans (Sebas-
tiani et al. 2017), and some use policy generation (Grigore and Scassellati 2016) to incorporate
communication actions in plans to obtain further knowledge. For instance, Petrick and Foster
(2013) and Giuliani et al. (2013) consider queries to learn what type of drink the human wants
so that the robot prepares the customer’s order accordingly. In their approach, human does not
perform any actions that can change the world state. Sebastiani et al. (2017) consider queries
to negotiate which tasks will be performed by the robot or the human. In this work, negotiation
actions are not formalized as nondeterministic actions as part of the domain description, and
thus the contingencies in communications are generated by an algorithm as execution variables.
In the study by Grigore and Scassellati (2016), authors consider queries to reduce state estima-
tion uncertainty in policy generation. Their goal is to assist the human rather than to plan for
completion of a task collaboratively. Different from these related work, our goal is to plan for
collaborative actions, and we consider a richer set of communication tasks. We formalize all the
communication actions as part of the domain description, and utilize them as part of conditional
planning.

Studies by Petrick and Foster (2013) and Giuliani et al. (2013) are most related to our work,
because communication actions are modeled formally as sensing actions and utilized while plan-
ning, for the purpose of constructing a dialogue: the robot communicates with human and serves
them the requested drink. Our proposed approach utilizes communication for collaborative hy-
brid planning where human and robot perform actuation actions to reach a common goal and are
aware of each other’s intentions through observation and verbal communication. Collaborative

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

Theory and Practice of Logic Programming 1019

tasks require richer communication actions, as observed above. Also, the representation language
we use allows us to formalize commonsense knowledge.

The research work on Hierarchical Agent-based Task Planner (HATP) extended by Sebastiani
et al. (2017) to generate conditional plans for human-robot collaborations by adding on-line
negotiations is also closely related to our approach. In this work, they generate shared plans
including sensing actions for human-robot interactions and collaborative actions. Our method
does not negotiate on-line at every step of the task by asking who is going to perform which task
but computes an off-line hybrid conditional plan before execution.

In particular, we compute a hybrid conditional plan for actuation, sensing, and communication
actions and perform those actions only when needed. For instance, while executing a task, if the
robot senses that human pro-actively takes an initiative for a task, it confirms human intention,
otherwise it continues performing its own task. If the robot is unable to perform a task (verified
via a feasibility check), it can ask help from the human teammate. Human preferences may
change from person to person: hence, due to this, we allow for specifying safety and verbosity
level of plans to be generated.

9 Conclusion

We have introduced a novel method for collaborative assembly planning in uncertain and human-
centric environments, using hybrid conditional planning based on ASP. This contribution is im-
portant for human-robot interactions from the following perspectives:

• Formal modeling of communication actions, embedded with formal representation of com-
monsense knowledge and low-level geometric checks, helps the robots to better understand
when to communicate and how, as part of planning their actions. This is important for more
effective collaborations of human-robot teams.

• Offline planning of actions considering all contingencies with respect to outcomes of com-
munication actions reduces the number of online replannings (as observed for sensing
actions), and thus provides a more natural communication with human teammates.

• Our formal modeling of actuation, sensing, and communication actions take safety con-
cerns into account, utilizing hard and weak constraints of ASP. This is crucial for ensuring
safety of human-robot collaborations.

• Our use of logic programming paradigm ASP for collaborative assembly planning provides
a formal method for human-robot interaction studies. Investigating the use of such logic-
based and provable methods is important for trustability of AI and robotic applications.

Our study also contributes to logic programming by extending its applications to another ex-
citing, yet challenging area of robotics.

Based on the motivating empirical results and real-world applications on the furniture assem-
bly domain, our ongoing work includes extending the types of communication actions for more
effective human-robot teams.

References

BARAL, C., KREINOVICH, V., AND TREJO, R. 1999. Computational complexity of planning and approxi-
mate planning in presence of incompleteness. In International Joint Conference on Artificial Intelligence.
948–955.

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

1020 Rizwan, Patoglu, Erdem

BREWKA, G., EITER, T., AND TRUSZCZYNSKI, M. 2016. Answer set programming: An introduction to
the special issue. AI Magazine 37, 3, 5–6.

EITER, T., IANNI, G., SCHINDLAUER, R., AND TOMPITS, H. 2005. A Uniform Integration of Higher-
Order Reasoning and External Evaluations in Answer-Set Programming. In International Joint Confer-
ence on Artificial Intelligence. 90–96.

GIULIANI, M., PETRICK, R., FOSTER, M. E., GASCHLER, A., ISARD, A., PATERAKI, M., AND

SIGALAS, M. 2013. Comparing task-based and socially intelligent behaviour in a robot bartender. In
ACM on International Conference on Multimodal Interaction. 263–270.

GRIGORE, E. C. AND SCASSELLATI, B. 2016. Constructing policies for supportive behaviors and com-
municative actions in human-robot teaming. In ACM/IEEE International Conference on Human-Robot
Interaction. 615–616.

KARAMAN, S. AND FRAZZOLI, E. 2011. Sampling-based algorithms for optimal motion planning. The
International Journal of Robotics Research 30, 7, 846–894.

KIM, J., BANKS, C. J., AND SHAH, J. A. 2017. Collaborative planning with encoding of users’ high-level
strategies. In AAAI. 955–962.

LASOTA, P. A. AND SHAH, J. A. 2015. Analyzing the effects of human-aware motion planning on close-
proximity human–robot collaboration. Human factors 57, 1, 21–33.

PEOT, M. A. AND SMITH, D. E. 1992. Conditional nonlinear planning. In Artificial Intelligence Planning
Systems. Elsevier, 189–197.

PETRICK, R. P. AND FOSTER, M. E. 2013. Planning for social interaction in a robot bartender domain. In
International Conference on Automated Planning and Scheduling.

PRYOR, L. AND COLLINS, G. 1996. Planning for contingencies: A decision-based approach. Journal of
Artificial Intelligence Research 4, 287–339.

SEBASTIANI, E., LALLEMENT, R., ALAMI, R., AND IOCCHI, L. 2017. Dealing with on-line human-
robot negotiations in hierarchical agent-based task planner. In International Conference on Automated
Planning and Scheduling.

ŞUCAN, I. A., MOLL, M., AND KAVRAKI, L. E. 2012. The Open Motion Planning Library. IEEE Robotics
and Automation Magazine 19, 4, 72–82.

TELLEX, S., KNEPPER, R. A., LI, A., RUS, D., AND ROY, N. 2014. Asking for help using inverse
semantics. In Robotics Science and Systems.

UNHELKAR, V. V., SIU, H. C., AND SHAH, J. A. 2014. Comparative performance of human and mobile
robotic assistants in collaborative fetch-and-deliver tasks. In ACM/IEEE International Conference on
Human-Robot Interaction. 82–89.

WARREN, D. H. D. 1976. Generating conditional plans and programs. In Summer Conference on Artificial
Intelligence and Simulation of Behaviour. 344–354.

YALCINER, I. F., NOUMAN, A., PATOGLU, V., AND ERDEM, E. 2017. Hybrid conditional planning using
answer set programming. Theory and Practice of Logic Programming 17, 5-6, 1027–1047.

https://doi.org/10.1017/S1471068420000319 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068420000319

