
ROSSMARie: A Domain-Specific Language To Express Dynamic Safety
Rules and Recovery Strategies for Autonomous Robots

Momina Rizwan1, Christoph Reichenbach1 and Volker Krueger1

Abstract— Ensuring functional safety is a critical challenge
for autonomous robots, as they must operate reliably and pre-
dictably despite uncertainty. However, existing safety measures
can over-constrain the system, limiting the robot’s availability
to perform its assigned task. To address this problem, we
propose a more flexible strategy that equips robots with the
ability to adapt to system failures and recover from those
situations without human intervention. We extend a domain-
specific language, Declarative Robot Safety (DeROS), whose
runtime stops a robot whenever it violates a safety rule (e.g.,
proximity to a human). Our extended language, ROSSMARie,
adds the capability to monitor whether a rule is no longer
violated and to recover and resume robot operation. We validate
ROSSMARie on the ROS-based industrial platform SkiROS2
and verify its effectiveness in achieving safety and availability.
Our experiments demonstrate that our DSL extension ensures
functional safety while enabling robots to complete their tasks.

I. INTRODUCTION

Ensuring the safe behavior of robots in a dynamic and
unpredictable environment where humans are present is a
challenging task. Autonomous robots must be designed to
operate effectively in uncertain environments and are able
to adapt to system failures without external interference [1].
While deploying autonomous robots in real-life settings, the
safety of the environment, human users, and the robot itself
is of prior importance.

Runtime monitoring is one way of guaranteeing safety
which has been explored in recent years [2]. A safety mon-
itor is an independent component that can detect potential
safety violations and intervene with recovery or corrective
strategies. Adam et. al [3] trigger a stop action when the
robot encounters an unexpected situation and waits for the
operator to start the robot. While this strategy may be suitable
for their experiments, it is a conservative strategy that for an
autonomous robot For example, in the case of service robots
operating in households, if the safety protocol requires the
robot to stop whenever it encounters uneven terrain, it may
not be able to complete its task, such as cleaning a room,
as efficiently as it could if it were able to slow down until
it has crossed the uneven area and then continue cleaning at
its normal speed.

While stopping the robot is an important safety measure to
prevent accidents, it can hinder the robot’s ability to function
effectively in certain contexts. Therefore, it is important
to strike a balance between safety and functionality when

This work was partially supported by the Wallenberg AI, Autonomous
Systems and Software Program (WASP) funded by Knut and Alice Wallen-
berg Foundation.

1Department of Computer Science, Faculty of Engineering
(LTH), Lund University, SE 221 00 Lund, Sweden. E-mail:
<firstname>.<lastname>@cs.lth.se.

designing safety strategies [4]. Addressing these challenges
requires innovative approaches to robot design and program-
ming, as well as comprehensive safety protocols to ensure
that robots can operate safely in a variety of contexts. By
continuing to improve the safety behaviours of autonomous
robots, we can unlock the full potential of these machines to
make our lives easier and more efficient.

In this extended abstract, we focus on functional safety and
assume that the sensors are reliable. A system is considered
functionally safe if it operates correctly in response to its
inputs and if it can’t, then it should fail in a predictable
manner [3]. We extend an existing domain-specific language
designed in the spirit of DeROS [3] which generates a
safety monitor (for ROS-based software) that enforces rules
expressed in that language. The contributions include:

1) We modify the semantics of the language, enabling
robots to resume after a hazardous/unsafe situation has
passed.

2) We introduce strategies to recover from those safety
hazards

3) We integrate the framework proposed by Adam et.
al. [3] with SkiROS2, a skill-based platform for ROS,
and we demonstrate the effectiveness of our recovery
strategies by applying them to new scenarios.

To distinguish between the previous work and our imple-
mentation, we refer to our modified DSL as ROSSMARie.

II. BACKGROUND: DEROS

DeROS [3] is a Domain-Specific Language (DSL) to
express dynamic safety rules for runtime monitoring based
on informal safety specifications that provide information on
components in Robot Operating System (ROS) (topics and
nodes). The DeROS compiler then generates a runtime safety
monitor to check the specified properties of the software sys-
tem. This framework proposed by Adam et. al. [3] is aimed
at isolating safety handling from the robot functionality and
treating it as a cross-cutting concern.

III. ROSMARIE

ROSSMARie is an extension of DeROS with modified
semantics. The runtime semantics of ROSSMARie enable
continuous feedback from the sensors and allows the robot
to resume its current operation as soon as the sensor values
are in a safe range. We have implemented ROSSMARie in
the JastAdd [5] meta-compiler.

A. Integration with SkiROS2

SkiROS2 [6] is a skill-based robot control platform that
can execute multiple skills st the same time with the help



Fig. 1. Safety monitor acting as a filter to avoid conflicting information
published on a topic.

of action server-based communication. Actions provide non-
blocking background processing and are ideal for executing
longer robot skills. While integrating ROSSMARie with
SkiROS2, we encountered a problem where different mod-
ules send (publish) conflicting messages on the same ROS
topic. This can result in jittering or unsafe behaviours from
the robot. We realized that action servers need special
handling. To address this, we added a safety node to choose
which message to publish on the topic. Figure 1 shows an
example of a safety node that filters out commands that set
velocity. To introduce such a filter, we use the remap function
in roslaunch. Remapping redirects a ROS node to publish on
/unfil_cmd_vel instead of /cmd_vel.

To support ROS action servers in ROSSMARie code
generation, we cancel the previous goal and send a new goal
to the action server. DeROS, in comparison, can only support
components that communicate using topic-based publish-
subscribe communication.

IV. EXPERIMENTS

To showcase the recovery strategies, we performed ex-
periments with a robot named Heron, as shown in Figure 2.
Heron integrates a MIR 100 with a UR5e. The MIR 100 is an
indoor autonomous mobile robot with a maximum payload
capacity of 100 kg. It has two laser scanners and ultrasonic
sensors providing 360◦ visual feedback. The maximum speed
of the robot is 1.5 m/s forward and 0.3 m/s backward. The
UR5e is a 20.6 kg robot arm with a maximum payload
capacity of 5 kg. It has a six-axis force/torque sensor to
detect collisions. We ran our experiments using SkiROS2
skills.

Case study I: We used ROSSMARie to define safety
rules for Heron navigating in uneven terrain with three
safety hazards i.e. bumps, slight and steep ramps shown in
Figure 2(a). If the robot encounters a bump with one wheel
(detected through an IMU sensor), our rules reduce the speed
until the robot has fully crossed the bump. On the other
hand, a slight ramp triggers an increase in speed to enter
the operating area. If the ramp is steep, the robot recovery
strategy is to go backward and replan. In all three scenarios,
the robot tried to recover from the situation that could have
led to damage to the robot.

Case Study II: Figure 2(b) shows a simulation setup
where Heron’s task is to move an object from one table
and place it on another. An active compliance controller can
produce vibrations in the robot arm when contact occurs

(a) (b)

Fig. 2. (a) Bump and a ramp in the corridor. (b) Placing a block on the
unexpectedly high table with an unknown height.

while placing the object. To avoid any serious damage, we
switch to position control whenever the force torque sensor
detects those vibrations.

Case Study III: Proactive behaviours are required to avoid
deadly/costly repercussions e.g. harming a human in a crash
is more costly. For human-shared workspaces, we defined
a safety rule to decrease arm speed whenever a human is
detected in the room.

V. LIMITATIONS AND FUTURE WORK

While conducting our experiments, we observed that re-
covery strategies can vary depending on the task at hand.
While safety rules typically aim to maintain a safe dis-
tance from objects, some tasks require interacting with
(e.g., pushing) an object. In such interaction scenarios, the
robot may need to approach the object more closely than
safety rules would normally allow. We plan to address such
scenarios by allowing ROSSMARie’s safety rules to be task-
aware. During experiments, we also encountered conflicting
recovery strategies for different safety rules. To identify and
resolve such conflicts, we plan to statically check rules for
overlap.

REFERENCES

[1] M. Müller, T. Müller, B. Ashtari Talkhestani, P. Marks, N. Jazdi, and
M. Weyrich, “Industrial autonomous systems: a survey on definitions,
characteristics and abilities,” at-Automatisierungstechnik, vol. 69, no. 1,
pp. 3–13, 2021.

[2] L. Masson, J. Guiochet, H. Waeselynck, K. Cabrera, S. Cassel, and
M. Törngren, “Tuning permissiveness of active safety monitors for
autonomous systems,” in NASA Formal Methods Symposium, pp. 333–
348, Springer, 2018.

[3] S. Adam, M. Larsen, K. Jensen, and U. P. Schultz, “Rule-based dynamic
safety monitoring for mobile robots,” Journal of Software Engineering
for Robotics, vol. 7, no. 1, pp. 121–141, 2016.

[4] J. Arents, V. Abolins, J. Judvaitis, O. Vismanis, A. Oraby, and K. Ozols,
“Human–robot collaboration trends and safety aspects: A systematic
review,” Journal of Sensor and Actuator Networks, vol. 10, no. 3, p. 48,
2021.

[5] G. Hedin and E. Magnusson, “Jastadd—an aspect-oriented compiler
construction system,” Science of Computer Programming, vol. 47, no. 1,
pp. 37–58, 2003.

[6] F. Rovida, M. Crosby, D. Holz, A. S. Polydoros, B. Großmann, R. P.
Petrick, and V. Krüger, “Skiros—a skill-based robot control platform on
top of ros,” in Robot Operating System (ROS), pp. 121–160, Springer,
2017.


	Introduction
	Background: DeROS
	ROSMARie
	Integration with SkiROS2

	Experiments
	Limitations and Future Work
	References

